

NASA Mars XR 2 Challenge *Mars Camp 1*

Mars Camp 1 simulates the first human camp on Mars at 38% gravity and is based on use of probable technologies and a site that possibly affords unique research on possible life and its evolution. All assets shown are VR models and most with animation operating in VR Unreal Engine 5.1.1.

Mars Camp

Site Size in Unreal Engine

Site Opportunity

Mars Camp 1 site crater has geological layers to research for life fossils and by layers for evolution.

NASA/SpaceX Star Ship initial landing and astronauts <u>and equipment deploy</u>

Astronaut

Equipment

Equipment deployed for search for water, communications dish, radio telescope, solar and radioisotope power system (RPS) power.

Mobility

Model courtesy of NASA

VR Astronaut collects ice samples, uses tools to fix equipment, and Astronaut (NPC with artificial intelligence) walks to explore.

CHRISTOPHER SHOVE, Ph.D.

Select Tool As From A Tool Belt

In VR Use Hand To Fix Equipment With Tool. HUD Shows 02 & Tasks.

Inflatible Habitat

Habitat Interior

CHRISTOPHER SHOVE, Ph.D.

Mars Camp

Simulation Focus 1

Electrolysis Oxygen production from Mars rocks containing ice H2O & CO2

Scheller, E. $(20\overline{2}2)$

02 Plant

Simulation Focus 2

Bioreactor producing algae food & 02

On a global scale microalgae produce more than 75% of the oxygen required for animals and humans.

Source: Wageningen University & Research Centre Netherlands

Photo ISS Bioreactor Algae Production Unit

Photo Industrial Bioreactor Algae Production CHRISTOPHER SHOVE, Ph.D. Brevel Inc. Israel

VR Microalgae Bioreactor

- Mars microalgae bioreactor asset based on *AlgaePARC* vertical panel operation.
- VR player interactions will be included to produce algae for food and O2 using Mars ISRU CO2, human waste sanitized fertilizer and H2O liquid derived from Mars rocks and ice.

AlgaePARC Operations Netherlands

XR IMPLEMENTATION

- 1)Images of assets and scenarios presented in this storyboard exist and operate in UE5.1.1VR including blue prints (BP).
- 2)Next steps include improving realism of some models including site, expanding *foci scenarios* of O2 and food production from Mars ISRU and via BP, implementing player interactions to fix different equipment.
- 3)Upon further research, more assets may be added.

Credits

- Producer & Unreal Engine Integrator and most Blue Prints Dr. Christopher Shove (U.S. Citizen)
- 3D models Andre Vaitsekhovich (Belarus) & Christopher Shove; "Algae Bioreactor" James Speight (USA); "Gas Tank" 3D model by Agustín Hönnun (Chile) is licensed under Creative Commons Attribution; "Scale Hopper" by seeriouslee is licensed under Creative Commons Attribution; "Industrial Grade Electric Motor" by Harri Snellman (Finland) is licensed under Creative Commons Attribution; & Epic Games Market Place
- Mars images courtesy of NASA, USGS & Google Earth/Mars
- Graphic Art Liubov Artemenko (Ukraine)
- Epic Unreal Engine 5.1.1 Virtual Reality used to make and operate VR simulation. References:
- Algaeparc.com Algae Bioreactor operations.
- Wageningen University (2023) "What can algae do for us?", https://www.wur.nl/en/value-creation-cooperation/algaeparc/show-3/what-can-algae-do-for-us.htm
- Davis, Joel, "From wet planet to red planet" <u>Geoscientist</u> December 2020
- Hecht, M., (2020) "MOXIE" https://mars.nasa.gov/mars2020/spacecraft/instruments/moxie/
- NASA, (2019) "Building Better Life Support Systems for Future Space Travel". Bioreactor Algae Food ISS: https://www.nasa.gov/mission_pages/station/research/news/photobioreactor-better-life-support
- Scheller, Eva (2022) H2O & CO2 ice in Mars rocks. https://www.nasa.gov/feature/is-there-wateron-mars-we-asked-a-nasa-scientist-episode-18.