

We are a solid-state battery start up company out of the University of Maryland

Our Team

Dr. Keith Gregorczyk
UMD
Founder, CEO

Joel Polanco
Intel
Board Member, Business Advisor

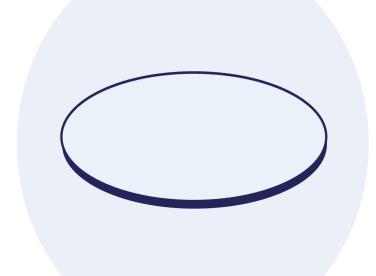
Dr. Nam Kim
UMD

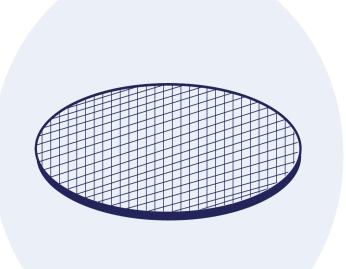
Founder
Semiconductor Processing

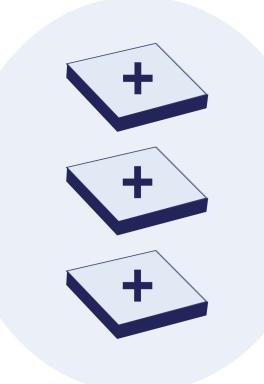
Prof. Gary Rubloff
UMD

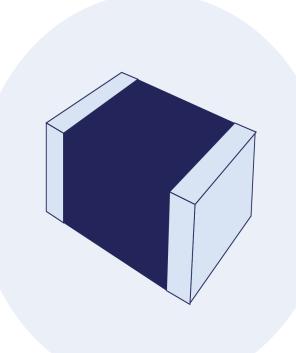
Founder

Materials Science & Engineering




Prof. Sang Bok Lee
UMD
Founder
Chemistry


Our Mission: Revolutionize Battery Manufacturing


State-of-the-art lithium ion batteries are made with dated manufacturing techniques from the industrial revolution. These techniques cannot be scaled down to microbattery scales. We have pioneered <u>three-dimensional thin-film fabrication of all-solid-state batteries using the portfolio of techniques which has underpinned the semiconductor electronics</u> industry for decades.

A Paradigm Shift to Semiconductor Based Manufacturing

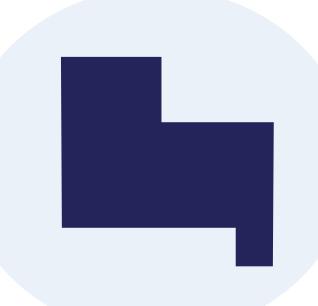
Highly Porous Wafers

- Like silicon, they come in different diameters and thickness.
- Commercially available.

Pattern & Process

- Photolithography is used to define batteries.
- Well established vapor phase methods to deposit the battery layers

Dies are Created


- Each wafer is chopped up into dies.
- Each die is a battery.
 Stacked to increase energy and tune voltage.
- **Packaged**
- Leverage capacitor packaging.
- Form factor is flexible.Tunable voltage.

Safe Superior Performance

Our History of Innovation

battery in a nanopore

DOE EFRC

14 \$M/5 years

2018

Proof-ofconcept SSB

DOE EFRC 11.2 \$M/4 years

2019-2020

SSB in Porous anodic aluminum oxide

EFRC Wind Down
2 \$M/year

2020-2023

SSB in AAO

DOE Platforms

2.25 \$M/3 years

Superior Performance

- High energy density
 >800 μWh/mm³.
- High power at no loss to energy.
- Tunable cell voltage.

Lower Cost

- **Financial**-cheaper and faster to produce.
- Environmental Half the amount of CO₂, no cobalt

Stability of Operation

- Large temperature operation range
- No pyrophoric and toxic liquid electrolytes
- No explosive failure, no fires

Flexible Form Factor

- No external pressure.
- Complicated shapes