menu

Bureau of Reclamation

 69,960

Imperfection Detection: Detect Me If You Can

Reclamation needs portable tools to non-destructively evaluate the condition of existing fiber reinforced polymer (FRP) composite structures

This challenge is closed

stage:
Won
prize:
$380,000

This challenge is closed

Partners
more
Summary
Timeline
Updates24
Forum15
Teams289
Press
FAQ
Summary

Overview

DEADLINE EXTENDED + REVISED INTELLECTUAL PROPERTY TERMS

--

The Bureau of Reclamation (Reclamation) is the largest provider of water and the second-largest producer of hydroelectric power in the United States.  Reclamation’s infrastructure uses all major civil engineering material classes, including steel, concrete, plastics, and composites, to achieve the performance, and service life needed.  Typical applications for composite materials include fiber-reinforced polymer (FRP) pipelines, tanks, and other specialized infrastructure components, which take advantage of composites’ excellent corrosion resistance, reduced weight, and other helpful materials properties.  Evaluation tools and methods for concrete and steel infrastructure are well established; however, FRP composite structures require new and more advanced evaluation techniques. 

As existing composite materials in our water infrastructure age, reliable and non-destructive methods to assess the condition of those composites structures in the field are needed.  Reclamation, in collaboration with the US Army Corps of Engineers (USACE), is sponsoring this challenge with the goal of developing portable tools that use non-destructive evaluation (NDE) methods to assess the condition of existing FRP composite structures.  Such tools may also be used to confirm the quality of newly-received FRP composite structures, like pipes or gates.

FRP composite pipe at field installation site

 

FRP composite wicket gate during field installation

This Imperfection Detection challenge has a total prize purse of $380,000.  In addition to the prize money, winners will have access to subject matter experts from both Reclamation and USACE, as well as access to potential commercial partners.

Challenge structure overview:

Phase 1 - Ideation

  • Submissions must be received by June 24, 2021.
  • Up to 5 of the top submissions will advance to Phase 2.  Winners will each receive $60,000 (total of $300,000 awarded).

Phase 2 - Prototype development

  • Phase 1 winners have approximately 10 months to work according to their proposed project plans, develop their prototypes, demonstrate their prototype’s performance, and submit a report.
  • Up to 3 of the top-performing approaches will advance to Phase 3.  Winners will each receive $10,000 (total of $30,000 awarded).

Phase 3 - Sponsor evaluations and demonstration event

  • Phase 2 winners have approximately 4 weeks to deliver their prototypes to Reclamation for joint Reclamation/USACE evaluations.  These evaluations will take about 14 weeks.
  • A final event will occur at the end of Phase 3.  Teams participating in Phase 3 will present an overview of their approach and results to Reclamation, USACE, and affiliated commercial partners. This is currently planned as an in-person event.  It may be held as a virtual event, as circumstances dictate.
  • The top-performing prototype will be announced at the final event, and the team which developed the prototype will win $50,000.

About Sponsors and Partners:

Reclamation has brought water to arid lands for agricultural and economic development for over 100 years and is the largest supplier of water in the US.  They are also the US’s second largest producer of hydroelectric power.

USACE has been delivering vital public and military engineering services for our Nation’s toughest challenges since 1806.  Like Reclamation, it is also a leading provider of hydroelectric power.   Additionally, USACE serves as the lead federal flood control agency.

Clemson Composites Center is a research, innovation, and development facility that promotes the economic advancement of composite materials through innovative research and sustainable applications.  They have collaborated with Reclamation and USACE to design and fabricate the composite panels that will be used by Phase 2 participants to demonstrate their prototypes’ performance.

Jesse Garant Metrology Center is a specialized part inspection company providing industrial computed tomography (CT) and x-ray services.  They have been employed by nearly all manufacturing sectors looking to gain additional insight about their product. Their services are focused on providing easy access to a complex imaging technology. They will be providing CT scans of the composite panels for Phase 2.

Thompson Pipe Group (TPG) is one of the largest and most diverse drainage, sanitary, water and trenchless pipe providers with manufacturing locations across the country and serving not just the US but all of North America. In collaboration with the Bureau of Reclamation, they will help to provide different composite pipe samples to be utilized in Phase 3 for testing. They will also provide technical support based on their expertise on composite pipe material.


Guidelines

Deadline extended and intellectual property terms revised on June 15, 2021 (see details here). 

Background and Technical Details

Fiber reinforced polymer (FRP) composites are materials in which a polymer matrix is reinforced with fibers.  Thermoset resins such as epoxy, vinyl ester, and polyesters are commonly used as the polymer matrix, and glass, carbon, and aramid are common materials for the reinforcing fibers.  Fibers can be continuous (as in tows or woven fabric), or discontinuous (as in chopped fibers).  As with all composites, the FRP composite provides better performance than either material by itself.  While the fiber reinforces the matrix and provides resistance to cracks, the polymer matrix both distributes the load to the reinforcing fiber and protects the fiber from the external environment.  

Composites offer many performance advantages.  In addition to having excellent strength, they weigh less than other common construction materials (like concrete or metal), and they have superior resistance to environmental conditions.  Also, composites are very durable and require little maintenance.  Lastly, by taking advantage of the many different combinations of polymer matrices and fibers, composites can be tailored to meet a wide range of specific performance requirements.  Because of these many benefits, composites are used in many applications including automotive, construction, aerospace, marine, and sports and recreation. 

The ongoing use of FRP composite materials for federal civil infrastructure, at both Reclamation and USACE, in applications such as pipelines, tanks, and other specialized structures or components takes advantage of composites’ excellent corrosion resistance, reduced weight, and other helpful properties.  As composites continue to age in their various infrastructure applications, reliable methods of assessing their condition in the field are needed. The goal of this challenge is to develop portable tools that use non-destructive evaluation (NDE) methods to assess the condition of existing FRP composite structures. 

Visual inspection of an FRP composite tank interior
Digital tap hammer inspection of FRP composite wicket gate

For this Imperfection Detection challenge, Reclamation seeks ideas for field-applicable non-destructive methods of detecting and quantifying the presence and location of the following types of defects:

  • Cracks
  • Delamination
  • Fiber breakage

Although commercially available technologies that can detect these defects exist, they don’t adequately meet Reclamation’s needs for in-situ NDE.  State-of-the-art NDE technologies are typically meant to be used in a laboratory setting.  The equipment can be large, heavy, and power-intensive.  

Competitive ideas submitted to this challenge will result in prototypes that can rapidly detect and quantify at least one of the three types of defects listed above, using equipment that is portable, rugged, and easily used in field settings.  Prototypes must be able to operate in variable climate conditions, or through layers of biofouling.  Participants in Phase 2 will be given 300 x 300 x 25 millimeter (mm) (12 x 12 x 1 inch) composite panels, containing various defects, against which they can demonstrate their prototypes’ capabilities.  Prototypes should be designed for Reclamation’s use and evaluation with real-life conditions in mind.  In particular, prototypes should be able to work on and be easily moved across large-scale composite structures that may have complex geometries and variable thicknesses (which may be thicker than 1 inch and contain a non-FRP core layer), as are seen in gates, pipe, and pipe fittings.  It is expected that proposed solutions will have a cost comparable to the base methodology/ies normally used in laboratory settings.

FRP composite pipe tee connector (fitting)

Reclamation would like to be able to detect defects at the scales described and depicted in the table and diagram shown below. Demonstrating detection limits below these thresholds is of interest, but resolution and detection limits must be balanced against scan rate (speed). For example, a prototype that detects defects that are one order of magnitude smaller than the detection limits (see table below) at a scan rate of one square meter per hour would score lower that meets detection limits at a rate of one hundred square meters per hour. 

Benchmark performance specifications for each type of defect:

Type of defectDetection limit Other specifications
Cracks30 mm length parallel to fiber orientation, depth of 1 layer from backside, width of approximately 0.3 mm (see figure below)

Minimum: Detection of defect.  

Preferred: Ability to characterize x,y,z dimensions of defect and orientation with respect to fibers.

Delamination   2.5 mm diameter at 20 mm depth, gap of approximately 0.5 mm

Minimum: Detection of defect.  

Preferred: characterize total area of delamination and determine location (depth from surface)

Fiber breakage30 mm length perpendicular to fiber orientation, depth of 1 layer from backside, width of approximately 0.3 mm (see figure below)

Minimum: Detection of defect.  

Preferred:Ability to characterize x,y,z dimensions of defect and orientation with respect to fibers.

 

NDE methodologies that are of interest to Reclamation include:

  • Terahertz
  • Radiography
  • Shearography
  • Thermography
  • Ultrasound

This list is neither exhaustive nor limiting.  If you have other innovative approaches or combinations of approaches to propose, we want to hear about them!

Regardless of what you propose, it must be demonstrable within the 10-month Phase 2 development period.  Composite panels with engineered defects will be supplied to each Phase 2 team, so that they can demonstrate how well their technology performs.  These panels will be 300 x 300 x 25 mm (12 x 12 x 1 inch), and the engineered defects will vary in size and depth within the panels.  These panels will have been fully characterized by computed tomography (CT), and it is expected that teams will be able to identify and quantify most, if not all, of the engineered defects.  There is a possibility that teams may further distinguish their prototype’s performance by additionally detecting and characterizing unintentional manufacturing defects that may be present in their panels.

At the end of the development period, Phase 2 participants will submit a complete development report, including all data arising from laboratory demonstrations on the supplied composite panels.  If selected as a Phase 3 participant, you will send in both your prototype and the supplied panel.  Reclamation will use your prototype to confirm your reported results and further evaluate the prototype’s performance on composite pieces more representative of field conditions.  Prototype performance may be assessed using composite pieces that contain curvature, thicknesses that may exceed 25 mm, and non-FRP core materials.  Additionally, Reclamation will review the cost estimate provided and assess the prototype’s field-readiness, portability, and power requirements.  

Reclamation is interested in seeing this capability developed so that it is eventually available for use in the field.  They are not interested in manufacturing the devices themselves.  The final demonstration event at the close of Phase 3 is an opportunity for teams to demonstrate their prototypes to the Reclamation and USACE network of commercial partners.  There is a potential opportunity for post-challenge development work with a commercial partner.

 

Phase 1

Everyone is invited to participate in Phase 1.  The deadline to submit your responses is July 20, 2021.  Reclamation and USACE are interested in portable technologies that can be used in the field to assess the condition of existing FRP composite structures.  Whatever you propose must be something that can be successfully developed and demonstrated within the 10-month Phase 2 development window.  It is also important to remember that Phase 2 winners will be selected based on how well their prototypes detect and characterize engineered defects in supplied composite panels, but Phase 3 winners will be selected based on how their prototypes perform on test pieces that have curvature, complex geometries, and variable thicknesses.  

In addition to providing a strong scientific rationale and any preliminary data for your proposed approach, Phase 1 submissions must also include a realistic project plan that clearly outlines the timeline and path for Phase 2 that will enable your prototype to be ready for the Phase 3 evaluations and final demonstration event.

Submissions that have passed a pre-screening step - which removes non-responsive and/or incomplete submissions - will be reviewed by the Evaluation Panel.  The panel will select up to 5 of the most compelling submissions as Phase 1 winners.  Winning submissions will be selected based on how they score against the Phase 1 evaluation criteria, see below.  Each winner will receive $60,000 award money to support their prototype development efforts.  If Reclamation determines that none of the Phase 1 submissions are sufficiently compelling, they may elect to recognize the authors of the top three submissions with $15,000 each and end the challenge at this stage.

 

Phase 2

The Phase 2 prototype development period is approximately 10 months long, with a mid-point check-in that will occur in February 2022.  At the start of the development period, Phase 1 winners will each receive $40,000 of their award money and will schedule a mid-point check-in with Reclamation.  It is anticipated that teams will have regular engagement with Reclamation and HeroX throughout the development period. Teams are expected to alert Reclamation to changes in their project plan, unforeseen roadblocks, and important breakthroughs. Teams can also request time with a subject matter expert (SME) and ask for advice. In addition to development funds won from Phase 1, Phase 2 teams will also have up to 40 hours of access to SMEs.  The experts will be drawn from Reclamation and USACE, depending on the specific expertise required by a team.  During the mid-point check-in, each team will review with Reclamation and USACE their progress relative to the project plan submitted in Phase 1.  After successful completion of the check-in and when the teams demonstrate meaningful progress in accordance with their proposed project plan, teams will each receive the remaining $20,000 of the award money to aid in the continued development of their prototype.

At the end of the Phase 2 period, each team will submit a report that contains a summary of their development efforts, data resulting from their prototype’s evaluation of the provided composite panels, detailed descriptions of any improvements and/or changes made to the prototype since the mid-point check-in, and a video which demonstrates how the prototype is set up and operated.  The Evaluation Panel will score Phase 2 teams’ prototypes based on the reported results of their non-destructive evaluation of the provided FRP composite panels and their performance against their project plan.  See Phase 2 evaluation criteria for full details.  Up to three of the top-performing teams will advance to Phase 3 and will each receive an additional $10,000 to support travel and associated costs with participation in the Phase 3 final demonstration event.

 

Phase 3

Teams participating in Phase 3 will have roughly 4 weeks to deliver their working prototypes and the supplied composite panels to a specified Federal laboratory.  Reclamation and USACE will confirm the reported prototype performance in detecting defects on the supplied panel and will further evaluate the prototypes in a variety of conditions and against a range of composite samples with variable thicknesses (that may be greater than 25 mm), which may include a non-FRP core layer (such as polymer resin with fine aggregate) - some of these composite samples may be pieces retired from the field, pieces about to be deployed, or samples developed with engineered defects.  After a 14-week evaluation period, a final demonstration event will be held.  This is an opportunity for commercial partners of both Reclamation and USACE to interact with Phase 3 participants and to observe demonstrations of the different prototypes.  Reclamation has a strong interest in the eventual commercialization of promising technologies, and this event offers the potential for additional development and commercialization of one or more prototypes.  A final winner will be announced at the end of the event and will be awarded a prize of $50,000.

 

Timeline

Challenge launch March 4, 2021

Phase 1 submission deadline July 20, 2021

Phase 1 evaluation period July 20 - September 14, 2021

Phase 1 winners announced September 21, 2021

Phase 2 development period September 28, 2021 - July 21, 2022 

Phase 2 submission deadline July 21, 2022

Phase 2A announced Sep 28 2022

Phase 2A submission deadline March 10, 2023

Phase 2A winners announced April 18, 2023

Phase 3 prototype delivery to USBR May 30, 2023

Phase 3 evaluation period May 31 - August 2023

Phase 3 winner announced Sep 2023

 

Phase 1 Judging Criteria 

Phase 1 paper submissions will be evaluated against the following criteria:

CriteriaDescriptionOverall Weight
Proposal QualityIs the submission complete and responsive?  Is the writing clear, concise, and compelling?  Are the ideas and information presented thoughtfully and in an easy-to-follow manner?5
NDE characterization capabilities

Is the proposed approach likely to detect one or more of the defects (cracks, delamination, and fiber breakage) at or beyond the desired detection limits?  Will the proposed approach be able to detect multiple types of defects at once?  Has the proposed method already been proven commercially?  

Does the submission describe how the data will be collected, stored, transferred, and analyzed? 

25
Appropriateness for field use

Will the proposed prototype be suitable for use in the field?  For example, some things to address include:

  • Rugged/durable
  • Lightweight and portable
  • Rapid
  • Energy and power efficient
  • Ability to perform in a variety of environmental conditions, including mud, biofouling, and debris
  • Flexible in design to accommodate composite structures with complex geometries and variable thicknesses
25
Cost

Are the proposed costs competitive with or better than those associated with current, commercially available, testing methods?  Are there additional capabilities offered by the proposed approach that would affect the calculation of the cost proposition?  Are the assumptions used for the cost estimation realistic and all expected costs included?

Proposed costs should include labor, setup time, and post-processing.

What other costs may be incurred for long-term maintenance and upkeep?

15
Project planIs the submitted project plan realistic, clear, and well-thought out?  Does it identify the major hurdles that must be overcome for successful prototype development?  Does the project plan clearly outline the activities and milestones that must occur in order to successfully demonstrate the proposed approach at the correct scale by the Phase 3 demonstration?  20
TeamDoes the team contain the necessary skills and expertise required to execute the project plan?  Does the team have adequate access to resources and other experts, as needed?10

 

Phase 1 Submission Form

Please complete your submission on the HeroX platform. We recommend opening the submission form early so you understand what formatting options are available to you. You can edit your submission up to the deadline, even if you have already submitted it. Character limits include spaces.  

  1. Team Information - For each team member: please list their names, their roles/expertise, and their email addresses. Please note who is the team leader/primary point of contact. (6000 characters max)
  2. Proposal Overview - Please provide an overview of your proposed approach: (3000 characters max)
    1. Which NDE methodology/ies are you proposing to use?
    2. How will you render the technology/ies into a portable, durable, fast-scanning device?
    3. Why do you believe your prototype can be developed and demonstrated within the timeframe of this challenge?
  3. Prototype Characterization Capabilities (6000 characters max)
    1. What types and sizes of defects will your prototype be able to detect, to what resolution, and at what depth?  Will your prototype be able to detect and quantify more than one kind of defect?
    2. What is the technical maturity of the base methodology/ies (demonstrated, reduced to practice, commercially available, etc)?  If this capability is commercially available, what advantages does your prototype offer over commercial products?
    3. How will your prototype work on composite structures with complex geometries, variable thickness, and heterogeneous layers?  What limitations might arise with regard to the types of composite structures and thicknesses that could be evaluated with this prototype?
    4. How is the data collected, stored, transferred, and analyzed?
  4. Prototype Field Fitness - Please describe how your prototype will function in the field.  (6000 characters max)
    In particular, please address:
    1. What are the power requirements for your prototype
    2. Approximately how much will it weigh
    3. How long will it take to scan an area nominally 1 square meter
    4. How rugged is the prototype likely to be in field conditions, including
    5. Ambient temperatures ranging 0 - 35ºC
    6. Dust, rain or light moisture
    7. Biofouling, mud, or debris in and around the structure’s surface
    8. Bright sunlight or glare
    9. What concerns, if any, do you have about operational  speed, durability, or other operational constraints (such as weight or power consumption)?
  5. Cost - Please provide a cost estimation associated with making, operating, and maintaining your prototype and share any underlying assumptions used to produce this estimate.  How does this cost compare with those for comparable, current, commercially available, laboratory testing?  Does your prototype offer any other capabilities, advantages, or disadvantages that could impact the cost proposition? (3000 characters max)
  6. Project Plan - Please provide a complete project plan that shows how you will have a demonstrated prototype by the end of an 10 month development period.  Your project plan should include the following milestones: (6000 characters max)
    1. Functional demonstration of prototype
    2. Demonstration of prototype’s field-readiness
    3. Characterization of provided composite panels and comparison of collected data with provided data
    4. Remember, if you are selected as a Phase 1 winner, you will be expected to execute against this project plan.
    5. Additionally, please discuss the resources and expertise that you will need to successfully develop your proposed approach.  If there are resources and/or expertise needed that are currently not available to your team, how do you plan to address these gaps?
    6. What do you anticipate will be the biggest hurdle in successfully developing and demonstrating your technology?  What are your current thoughts about how to tackle it?
  7. Supporting Files - Please upload any supporting files, such as design files, team bios or CV’s, etc.

Phase 2 Judging Criteria

Phase 2 submissions will be evaluated against the following criteria:

Section DescriptionWeight %
Characterization capability

How did the prototype perform in terms of characterizing the supplied composite panels?  Did the performance match what was proposed? How did the performance compare to that from an analogous benchtop capability?

How easy was it to interpret the results?  Was the data analysis/processing easy to use?

How does the characterization of the composite panel compare with the CT scan characterization performed when the panel was first manufactured? 

35

Field potentialWhat is the potential for this prototype to be successfully deployed in field settings?  How do the different trade-offs for things like operation scan rate (speed), field-readiness, and weight stack up? 

30

Updated cost estimationWhat are the updated costs for this prototype?  How are the costs likely to change with further technology development?  How does it compare with costs for similar capabilities/equipment for use in laboratory settings?

15

Commercialization potential

What is the commercial potential for this technology? For example: 

  • Is it likely to be attractive to a development and manufacturing partner?
  • Are there other potential applications for this technology?
  • How much additional time and effort would be needed to commercialize it?

20

 

Phase 2 Submission Form

Please complete your submission on the HeroX platform. We recommend opening the submission form early so you understand what formatting options are available to you. You can edit your submission up to the deadline, even if you have already submitted it. Character limits include spaces.  

 

  1. Characterization capability - Please present the data collected by your prototype for the composite panels provided.  If you collected multiple sets of data, please provide all processed data and label the best data set.  Data (raw and processed) may also be uploaded as a separate spreadsheet, with a summary table included here. Please discuss the data collected and how it compares with any other characterization you might have performed on the panel.  (30,000 characters max)
  2. Prototype operation and field potential (30,000 characters max)
    1. Please describe how to set up and operate your prototype.  Did you collect all data sets operating the prototype in the same manner?  If not, please identify which sets were collected differently and describe the different operation modes.
    2. Having used your prototype, please provide an assessment for its ease and durability for use in field settings.  Be honest - we understand this is a first prototype and additional development work needs to occur.
    3. What field conditions, if any, are contraindicated for using this prototype?
  3. Updated cost estimation - Please provide an updated cost estimate for manufacturing and operating your technology.  Be sure to include anticipated maintenance costs as part of the operating costs.  How does this cost compare with those for comparable, current, commercially available, laboratory testing? (3000 characters max)
  4. Commercialization potential - Please discuss the commercial potential for your technology. (6000 characters max)
    1. Why would a Reclamation or USACE partner want to further develop this with you?  What are the advantages and disadvantages of your technology?  Are there other applications for which this technology could be marketed?
    2. In terms of time and effort, how much additional work do you estimate is needed to move your technology into a pre-production phase?  What additional resources and funds would you require?
  5. Video demonstration- Please provide the link to a video that demonstrates how to set up and operate your prototype. Video must be longer than 90 sec and shorter than 20 min
  6. Supporting files - Please upload any supporting files, such as data files, updated design drawings/schematics, etc.

Phase 2A Submission

 You may reuse any portion for your Phase 2 submission for this Phase 2A Submission. Please ensure you review the questions carefully as there are some minor changes in the form.

  1. Technology Overview: Please provide a brief overview of your technology such that your Phase 2A submission can stand alone. You may copy text directly from prior submissions to complete this section.
  2. Technology Update: Describe any major changes to your technology since your Phase 2 submission. 
  3. Characterization capability - Please present the data collected by your prototype for the composite panels provided. Please discuss the data collected and the defects you are able to characterize (referencing the table in the challenge guidelines for the desired and preferred specifications such as location, area, etc.). Comment on how your characterization compares with the actual defect characteristics that were shared with you as well as with any other characterization you might have performed on the panel.   If you collected multiple sets of data, please provide all processed data and label the best data set.  Data (raw and processed) may also be uploaded as a separate spreadsheet, with a summary table included here. (30,000 characters max)
  4. Prototype operation and field potential (30,000 characters max)
    1. Please describe how to set up and operate your prototype.  Did you collect all data sets operating the prototype in the same manner?  If not, please identify which sets were collected differently and describe the different operation modes.
    2. Having used your prototype, please provide an assessment for its ease and durability for use in field settings.  Be honest - we understand this is a first prototype and additional development work needs to occur.
    3. What field conditions, if any, are contraindicated for using this prototype?
  5. Updated cost estimation - Please provide an updated cost estimate for manufacturing and operating your technology.  Be sure to include anticipated maintenance costs as part of the operating costs.  How does this cost compare with those for comparable, current, commercially available, laboratory testing? (3000 characters max)
  6. Commercialization potential - Please discuss the commercial potential for your technology. (6000 characters max)
    1. Why would a Reclamation or USACE partner want to further develop this with you?       What are the advantages and disadvantages of your technology?  Are there other applications for which this technology could be marketed?
    2. In terms of time and effort, how much additional work do you estimate is needed to move your technology into a pre-production phase?  What additional resources and funds would you require?
  7. Video demonstration- Please provide the link to a video that demonstrates how to set up and operate your prototype. Video must be longer than 90 sec and shorter than 20 min
  8. Supporting files - Please upload any supporting files, such as data files, updated design drawings/schematics, etc.


Note: In addition to the online submission form, each Phase 2A team will have an opportunity to present their submission to the judging panel. Each team will have 60 minutes with the judges, with a recommendation to reserve at least 30 minutes of this time slot for questions.

 

Phase 3 Judging Criteria

Phase 3 submissions will be evaluated against the following criteria:

Criteria DescriptionWeight
Characterization capabilityCan Phase 2 results be replicated in Reclamation labs?  Do the characterization capabilities meet Reclamation’s needs?  Do they meet Reclamation’s expectations?

30

Field potentialCould this device be used in a wide range of field conditions?  Does performance vary depending on field conditions?  Would you want to use this device in the field?  Is data managed in a manner that is compatible with fieldwork?  How much training is required to become a user?

30

CostIs the realistic cost a good value for the capability offered?  Will economies of scale be able to drive the cost down?

20

Commercialization potentialIs this likely to be attractive to a development and manufacturing partner?  If commercially available, would Reclamation or USACE purchase and use the technology?  Could this technology be used in other fields or applications?

20

 

Phase 3 Submission Checklist

You must provide the following items as part of your Phase 3 submission:

  1. Prototype
    1. Characterization device hardware and software, including source code essential to the solution.
    2. Any necessary computers to run the hardware and software, internet access, cables, or power cords.
    3. Any additional accessories or peripherals needed for prototype set up and operation.  
      Note: Reclamation cannot provide a computer, software, hardware or access to the internet. If your prototype requires these items, be sure to include them.
  2. Composite panels
    1. The FRP composite panel supplied by Reclamation during Phase 2.
  3. Updates
    1. A report that covers any updates, changes, or improvements to the developed technology that has occurred since the Phase 2 report submission (only if needed).
    2. A video that presents any changes to set up or operational procedures that have been developed since the Phase 2 report submission (only if needed).

Rules

Participation Eligibility:

The Imperfection Detection Challenge is open to individuals, age 18 or older. 

Submissions must originate from either the U.S. or a designated country (see definition of designated country at https://www.acquisition.gov/far/part-25#FAR_25_003), OR have been substantially transformed in the US or designated country prior to prototype delivery pursuant to FAR 25.403(c). 

In addition, United States federal sanctions prohibit participation from individuals and teams from certain countries (see: https://www.treasury.gov/resource-center/sanctions/Programs/Pages/Programs.aspx).

The following restrictions apply to the Challenge: (1) Federal employees acting within the scope of their employment are not eligible to participate; (2) Federal employees acting outside the scope of their employment should consult their ethics advisor before participating in the Challenge; (3) All employees of the Government, Challenge sponsors, and other individual or entity associated with the development or administration of the Challenge, as well as their family members (i.e., spouse, children, parents, siblings, other dependents) and persons living in the same household whether or not related, are not eligible to participate; (4) Contractors receiving Government funding for the same or similar projects, along with their employees, are not eligible to participate in the Challenge.

Bureau of Reclamation employees are not eligible to participate.

Submissions must be made in English. All challenge-related communication will be in English.

To be eligible to compete, you must comply with all the terms of the challenge as defined in the Challenge-Specific Agreement, which will be made available upon registration.

Registration and Submissions:

Submissions must be made online (only), via upload to the HeroX.com website, on or before the submission deadline. All uploads must be in PDF format. No late submissions will be accepted.

Multiple submissions are permitted for Phase 1. Only one Phase 2 submission is permitted per eligible team.

Submissions will become the sponsor's property upon submission and will not be returned with the exception of Phase 3 prototypes if requested prior to prototype shipment. Reclamation may cover reasonable shipping expenses to return prototypes to innovators if requested.

Shipping Costs:

Reclamation will cover reasonable shipping costs for Phase 2 winners to ship prototypes to Reclamation facilities. The solver may be responsible for additional fees incurred for customs clearance. 

Additional Information

  • By participating in the challenge, each competitor agrees to submit only their original idea. Any indication of "copying" amongst competitors is grounds for disqualification.
  • All applications will go through a process of due diligence; any application found to be misrepresentative, plagiarized, or sharing an idea that is not their own will be automatically disqualified.
  • All ineligible applicants will be automatically removed from the competition with no recourse or reimbursement.
  • No purchase or payment of any kind is necessary to enter or win the competition.
  • Void wherever restricted or prohibited by law.
Timeline
Updates24

Challenge Updates

Announcing the Imperfection Detection Challenge Winner!

Aug. 25, 2023, 5:11 p.m. PDT by Kyla Jeffrey

We are thrilled to announce the winner of Reclamation's Imperfection Detection Challenge, an endeavor aimed at advancing the field of non-destructive evaluation for existing fiber-reinforced polymer (FRP) composite structures. The challenge called for innovative and portable solutions that could effectively assess the condition of these structures without causing any damage. After rigurous prototype testing at Reclamation facilities, we are pleased to announce Team Permittivity's success!

Congratulations to Team Permittivity! 🎉

Team Permittivity has been awarded the grand prize of $25,000 for their entry “Utilizing Space Tech to Detect FRP Damage on Earth.” While the submitted prototype did not meet all of the award requirements, its inventive approach has demonstrated significant promise as a viable, low-cost solution for the future. The judging panel was impressed by the team's dedication, creativity, and determination in addressing the complex challenges associated with assessing FRP composite structures.

We would like to extend our sincere gratitude to all the teams and individuals who participated in this challenge since its inception in 2021. The quality and diversity of submissions were truly inspiring, reflecting the collaborative spirit of the scientific and engineering community. The Imperfection Detection Challenge has highlighted the potential for innovative solutions to transform the way we assess and maintain FRP composite structures.

Once again, congratulations to Team Permittivity for their outstanding achievement. We eagerly anticipate the impact that their work will have on the field, and we look forward to witnessing the continued progress of all participants in their pursuit of excellence.

Thank you for your dedication to advancing science and engineering. Together, we are shaping a brighter future for infrastructure and technology.


📣 T O M O R R O W: Don't Miss the Imperfection Detection Challenge Winners' Showcase

Aug. 23, 2023, 8:29 a.m. PDT by Jessie D'Amato Ford

Join us as we celebrate the innovators who are transforming fiber-reinforced polymer (FRP) composite evaluation and advancing  water infrastructure maintenance. We are excited to announce the winners of the Imperfection Detection Challenge and show off their winning solution!

 

📅 Date: August 24, 2023 ⏰ Time: 2:00 p.m. EDT 📍 Location: Virtual Event

 

Register today and get it right on your calendar!

See you there and have your questions ready!


Join us for the Imperfection Detection Winner Demonstration on August 24th

Aug. 11, 2023, 10:55 a.m. PDT by Jessie D'Amato Ford

 

Unveiling Innovation: Imperfection Detection Challenge Winners' Showcase

Join us as we celebrate the innovators who are transforming fiber-reinforced polymer (FRP) composite evaluation and advancing  water infrastructure maintenance. We are excited to announce the winners of the Imperfection Detection Challenge and show off their winning solution!

From concepts to prototypes, the Imperfection Detection Challenge followed a multi-phase structure to inspire creative solutions for assessing the condition of existing FRP composite structures and ensuring their performance.

 

📅 Date: August 24, 2023 ⏰ Time: 2:00 p.m. EDT 📍 Location: Virtual Event

 

Register today and get it right on your calendar!


Announcing the Phase 2 Imperfection Detection Challenge Winner!

April 18, 2023, 10:15 a.m. PDT by Kyla Jeffrey

We are thrilled to announce the winners of Reclamation's Imperfection Detection Challenge, an endeavor aimed at advancing the field of non-destructive evaluation for existing fiber-reinforced polymer (FRP) composite structures. The challenge called for innovative and portable solutions that could effectively assess the condition of these structures without causing any damage. After a rigorous prototype evaluation at Reclamation facilities, we are pleased to announce Team Permittivity as the winner of the Imperfection Detection Challenge!

Congratulations to Team Permittivity! 🎉

Team Permittivity has been awarded a prize of $25,000 for their prototype "Utilizing Space Tech to Detect FRP Damage on Earth." While the submitted prototype did not fully meet all of the award requirements, its inventive approach has demonstrated significant promise as a viable, low-cost solution for the future. The judging panel was impressed by the team's dedication, creativity, and determination in addressing the complex challenges associated with assessing FRP composite structures.

We would like to extend our sincere gratitude to all the teams and individuals who participated in this challenge since inception in 2021. The quality and diversity of submissions were truly inspiring, reflecting the collaborative spirit of the scientific and engineering community. The Imperfection Detection Challenge has highlighted the potential for innovative solutions to transform the way we assess and maintain FRP composite structures.

Once again, congratulations to Team Permittivity for their outstanding achievement. We eagerly anticipate the impact that their work will have on the field, and we look forward to witnessing the continued progress of all participants in their pursuit of excellence.

Thank you for your dedication to advancing science and engineering. Together, we are shaping a brighter future for infrastructure and technology.


Imperfection Detection Challenge Update

Sept. 28, 2022, 11:34 a.m. PDT by Kyla Jeffrey

The Imperfection Detection Challenge seeks portable tools to non-destructively evaluate the condition of existing fiber reinforced polymer (FRP) composite structures. This is a difficult task and, as of yet, no Phase 2 team has been able to characterize defects on the supplied FRP panel.

Four of the five Phase 2 teams submitted reports of their development efforts and capabilities to date and no team was able to meet the challenge requirements. The four teams were asked to share how much time they would require to meet the challenge requirements and only two teams were able to provide a timeline estimate at this time.

Reclamation and USACE are inviting these two teams to participate in a Phase 2A. These teams will each receive an additional ~6 months of development time as well as $15,000 to support additional procurement of materials. Near the end of Phase 2A, each team will receive a second instalment of $15,000 upon successful completion of a mutually agreed upon milestone. At which time, Phase 2 evaluations and Phase 3 will continue as initially planned.

We would like to commend all five Phase 2 teams for their efforts to date.


Forum15
Teams289
Winners
Martin Voorma's team Martin Voorma's team
1 team member
Looking for members
Permittivity Permittivity
6 team members
Looking for members
Anikait Gupta's team Anikait Gupta's team
2 team members
Looking for members
Ben Brandt's team Ben Brandt's team
1 team member
Looking for members
Arkadii Moiseienko's team Arkadii Moiseienko's team
1 team member
Looking for members
BBT BBT
1 team member
Looking for members
Fred Briggs's team Fred Briggs's team
2 team members
Looking for members
Prasiolite Prasiolite
1 team member
Looking for members
IterationAdvanced IterationAdvanced
1 team member
Looking for members
iImaging iImaging
4 team members
Looking for members
Milad Yousefi's team Milad Yousefi's team
1 team member
Looking for members
Stress Engineering Stress Engineering
1 team member
Looking for members
Chemventive Chemventive
2 team members
Looking for members
UltraAnalytix UltraAnalytix
5 team members
Looking for members
Crointel Crointel
2 team members
Looking for members
FleXarid Technologies FleXarid Technologies
1 team member
Looking for members
Brendan Wong's team Brendan Wong's team
1 team member
Looking for members
Barret Schlegelmilch's team Barret Schlegelmilch's team
3 team members
Looking for members
Dan Xiang's team Dan Xiang's team
1 team member
Looking for members
Young Inovators Young Inovators
2 team members
Looking for members
Team_AC's team Team_AC's team
1 team member
Looking for members
Don Bodine's team Don Bodine's team
1 team member
Looking for members
Lloyd Chambers's team Lloyd Chambers's team
2 team members
Looking for members
Press
FAQ